Discretization of the phase space for a q-deformed harmonic oscillator with q a root of unity

نویسندگان

  • Dennis Bonatsos
  • Demosthenes Ellinas
چکیده

The “position” and “momentum” operators for the q-deformed oscillator with q being a root of unity are proved to have discrete eigenvalues which are roots of deformed Hermite polynomials. The Fourier transform connecting the “position” and “momentum” representations is also found. The phase space of this oscillator has a lattice structure, which is a non-uniformly distributed grid. Non-equidistant lattice structures also occur in the cases of the truncated harmonic oscillator and of the q-deformed parafermionic oscillator, while the parafermionic oscillator corresponds to a uniformly distributed grid. Permanent address: Institute of Nuclear Physics, N.C.S.R. “Demokritos”, GR-15310 Aghia Paraskevi, Attiki, Greece

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Irreducibility and Compositeness in q-Deformed Harmonic Oscillator Algebras

q-Deformed harmonic oscillator algebra for real and root of unity values of the deformation parameter is discussed by using an extension of the number concept proposed by Gauss, namely the Q-numbers. A study of the reducibility of the Fock space representation which explores the properties of the Gauss polynomials is presented. When the deformation parameter is a root of unity, an interesting r...

متن کامل

M ar 2 00 3 Maths - type q - deformed coherent states

Maths-type q-deformed coherent states with q > 1 allow a resolution of unity in the form of an ordinary integral. They are sub-Poissonian and squeezed. They may be associated with a harmonic oscillator with minimal uncertainties in both position and momentum and are intelligent coherent states for the corresponding deformed Heisenberg algebra.

متن کامل

Intrinsic anyonic spin through deformed geometry

The properties of the deformed bosonic oscillator, and the quantum groups Uq(SL(2)) and GLq(2) in the limit as their deformation parameter q goes to a root of unity are investigated and interpreted physically. These properties are seen to be related to fractional supersymmetry and intrinsic anyonic spin. A simple deformation of the Klein-Gordon equation is introduced, based on GLq(2). When q is...

متن کامل

ua nt - p h / 03 03 12 0 v 1 1 9 M ar 2 00 3 Maths - type q - deformed coherent states for q > 1

Maths-type q-deformed coherent states with q > 1 allow a resolution of unity in the form of an ordinary integral. They are sub-Poissonian and squeezed. They may be associated with a harmonic oscillator with minimal uncertainties in both position and momentum and are intelligent coherent states for the corresponding deformed Heisenberg algebra.

متن کامل

A q-Deformation of the Harmonic Oscillator

The q-deformed harmonic oscillator is studied in the light of q-deformed phase space variables. This allows a formulation of the corresponding Hamiltonian in terms of the ordinary canonical variables x and p. The spectrum shows unexpected features such as degeneracy and an additional part that cannot be reached from the ground state by creation operators. The eigenfunctions show lattice structu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994